

Welcome to Flask-Web3

Welcome to Flask-Web3’s documentation.

User’s Guide

	About Flask-Web3
	A simple example

	An advanced example

	Flask-Web3 configuration

API Reference

	API
	Extension

	Utils

Contributing

If you are interested in contributing to the project please refer to Contributing guidelines

	Contributing guidelines
	Feature Requests, Bug Reports, and Feedback…

	Setting-Up environment

	Project organisation

	Coding

	Makefile commands

Additional Notes

Legal information and changelog are here for the interested.

	Changelog
	Version 0.1.1

	Version 0.1.0

	Version 0.0.0

	License
	Authors

	General License Definitions

	License

Indices and tables

	Index

	Module Index

	Search Page

About Flask-Web3

Flask-Web3 is a flask extension allowing to smoothly integrate a flask application with web3.py [https://github.com/ethereum/web3.py].
This package is intended for developers will to build a Flask application that interacts with an Ethereum client.

This page gives a good introduction to Flask-Web3. If not yet install please refer to the Installation section.

It is recommended that you have some light knowledge of web3.py [https://github.com/ethereum/web3.py] before you try
working with Flask-Web3.

A simple example

>>> from flask import Flask, jsonify
>>> from flask_web3 import current_web3, FlaskWeb3

Declare Flask application
>>> app = Flask(__name__)

Set Flask-Web3 configuration
>>> app.config.update({'ETHEREUM_PROVIDER': 'http', 'ETHEREUM_ENDPOINT_URI': 'http://localhost:8545'})

Declare Flask-Web3 extension
>>> web3 = FlaskWeb3(app=app)

Declare route
>>> @app.route('/blockNumber')
... def block_number():
... return jsonify({'data': current_web3.eth.blockNumber})

You can notice that Flask-Web3 gives you an application context bound variable current_web3 that is accessible
from any active flask application context.

An advanced example

You may like to declare your Flask-Web3 extension from a customize Web3 class with enhanced logic.

>>> from flask import Flask, jsonify
>>> from flask_web3 import current_web3, FlaskWeb3
>>> from web3 import Web3

Declare Flask application
>>> app = Flask(__name__)
>>> app.config.update({'ETHEREUM_PROVIDER': 'http', 'ETHEREUM_ENDPOINT_URI': 'http://localhost:8545'})

Declare a custom Web3 class
>>> class CustomWeb3(Web3):
... def customBlockNumber():
... return self.eth.blockNumber

Associate a custom FlaskWeb3 extension
>>> class CustomFlaskWeb3(FlaskWeb3):
... web3_class = CustomWeb3

Declare customized web3 extension
>>> web3 = CustomFlaskWeb3(app=app)
>>> isinstance(web3, CustomWeb3)
True

Declare route
>>> @app.route('/customBlockNumber')
... def last_odd_block_number():
... return jsonify({'data': current_web3.customBlockNumber()})

Flask-Web3 configuration

	Key

	Comment

	Default

	ETHEREUM_PROVIDER

	Type of Ethereum provider to use can be one of http, ipc, ws or test

	http

	ETHEREUM_ENDPOINT_URI

	Endpoint URI of Ethereum client (only useful when provider is http or ws)

	http

	ETHEREUM_IPC_PATH

	IPC path of Ethereum client (only useful when provider is ipc)

	None

	ETHEREUM_OPTS

	A dictionary containing extra options fed to the provider when declaring it

	{}

API

This part of the documentation covers all the interfaces of Flask-Web3.

Extension

	
class flask_web3.extension.FlaskWeb3(*args, app=None, create_provider=<function create_provider>, **kwargs)

	Main class for declaring a flask extension

	Parameters

	
	app (flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask]) – Flask application or blueprint object to extend

	create_provider (A function taking a :class:flask.Flask application configuration as parameter) – Function used to create a Web3 provider

	
init_app(app)

	Initialize application

	Parameters

	app (flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask]) – Flask application or blueprint object to extend

Utils

	
flask_web3.utils.create_provider(config)

	Create a web3.py provider

	Parameters

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Provider configuration

Contributing guidelines

Feature Requests, Bug Reports, and Feedback…

…should all be reported on the GitHub Issue Tracker [https://github.com/nmvalera/flask-web3/issues] .

Reporting issues

	Describe what you expected to happen.

	If possible, include a minimal, complete, and verifiable example [https://stackoverflow.com/help/mcve] to help

	Describe what actually happened. Include the full traceback if there was an
exception.

Setting-Up environment

Requirements

	Having the latest version of git installed locally

	Having Python 3.6 installed locally

	Having virtualenv installed locally

To install virtualenv you can run the following command

$ pip install virtualenv

	Having docker and docker-compose installed locally

	Having pip environment variables correctly configured

Some of the package’s dependencies of the project could be hosted on a custom PyPi server.
In this case you need to set some environment variables in order to make pip inspect the custom pypi server when installing packages.

To set pip environment variables on a permanent basis you can add the following lines at the end of your \.bashrc file (being careful to replace placeholders)

~/.bashrc

...

Indicate to pip which pypi server to download from
export PIP_TIMEOUT=60
export PIP_INDEX_URL=<custom_pypi_protocol>://<user>:<password>@<custom_pypi_host>
export PIP_EXTRA_INDEX_URL=https://pypi.python.org/simple

First time setup

	Clone the project locally

	Create development environment using Docker or Make

$ make init

Project organisation

The project

.
├── flask_web3/ # Main package source scripts (where all functional python scripts are stored)
├── docs/ # Docs module containing all scripts required by sphinx to build the documentation
├── tests/ # Tests folder where all test modules are stores
├── .coveragerc # Configuration file for coverage
├── .gitignore # List all files pattern excluded from git's tracking
├── .gitlab-ci.yml # GitLab CI script
├── AUTHORS # List of authors of the project
├── CHANGES # Changelog listing every changes from a release to another
├── CONTRIBUTING.rst # Indicate the guidelines that should be respected when contributing on this project
├── LICENSE # License of the project
├── Makefile # Script implement multiple commands to facilitate developments
├── README.rst # README.md of your project
├── setup.cfg # Configuration of extra commands that will be installed on package setup
├── setup.py # File used to setup the package
└── tox.ini # Configuration file of test suite (it runs test suite in both Python 3.5 and 3.6 environments)

Coding

Development Workflow

Please follow the next workflow when developing

	Create a branch to identify the feature or issue you will work on (e.g.
feature/my-feature or hotfix/2287)

	Using your favorite editor, make your changes, committing as you go [http://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes] and respecting the AngularJS Commit Message Conventions [https://gist.github.com/stephenparish/9941e89d80e2bc58a153]

	Follow PEP8 [https://pep8.org/] and limit script’s line length to 120 characters. See testing-linting

	Include tests that cover any code changes you make. See running-test and running-coverage

	Update setup.py script with all dependencies you introduce. See adding-dependency for precisions

	Write clear and exhaustive docstrings. Write docs to precise how to use the functionality you implement. See writing-docs

	Update changelog with the modifications you proceed to. See updating-changelog

	Your branch will soon be merged ! :-)

Testing

Running tests

Run test suite in by running

$ make test

Running coverage

Please ensure that all the lines of source code you are writing are covered in your test suite.
To generate the coverage report, please run

$ make coverage

Read more about coverage [https://coverage.readthedocs.io].

Running the full test suite with tox will combine the coverage reports from all runs.

Testing linting

To test if your project is compliant with linting rules run

$ make test-lint

To automatically correct linting errors run

$ make lint

Running full test suite

Run test suite in multiple distinct python environment with following command

$ make tox

Writing documentation

Write clear and exhaustive docstrings in every functional scripts.

This project uses sphinx to build documentations, it requires docs file to be written in .rst format.

To build the documentation, please run

$ make docs

Precisions

Updating changelog

Every implemented modifications on the project from a release to another should be documented in the changelog CHANGES.rst file.

The format used for a release block is be the following

Version <NEW_VERSION>

Released on <NEW_VERSION_RELEASED_DATE>, codename <NEW_VERSION_CODENAME>.

Features

- Feature 1
- Feature 2
- Feature 3

Fixes

- Hotfix 1 (``#134``)
- Hotfix 2 (``#139``)

.. _#134: https://github.com/nmvalera/flask-web3/issues/134
.. _#139: https://github.com/nmvalera/sandbox/flask-web3/issues/139

Be careful to never touch the header line as well as the release’s metadata sentence.

Version <NEW_VERSION>

Released on <NEW_VERSION_RELEASED_DATE>, codename <NEW_VERSION_CODENAME>.

Adding a new dependency

When adding a new package dependency it should be added in setup.py file in the install_requires list

The format should be dependency==1.3.2.

	When adding a dev dependency (e.g. a testing dependency) it should be added in

	
	setup.py file in the extra_requires dev list

	tox.ini file in the [testenv] deps

Makefile commands

Makefile implements multiple handful shell commands for development

make init

	Initialize development environment including

	
	venv creation

	package installation in dev mode

make clean

Clean the package project by removing some files such as .pyc, .pyo, *.egg-info

make test-lint

Check if python scripts are compliant with PEP8 [https://pep8.org/] rules

make lint

Automatically correct PEP8 [https://pep8.org/] mistakes contained in the project.

make coverage

Run the test suite and computes test coverage.
It creates an html report that is automatically open after the commands terminates

make tox

Run the test suites in multiple environments

make docs

Build documentation from the docs folder using sphinx.
It generates a build of the documentation in html format located in docs/_build/html.

Changelog

Here you can see the full list of changes between each releases of Flask-Web3.

Version 0.1.1

Released on July 8th 2018

Fix

	Travis deployment password

Version 0.1.0

Released on July 8th 2018

Features

	Implement Flask-Web3 extension with possibility to customize the base Web3 class used

	Implement create_provider utility function that create a provider from a flask like configuration object

	Implement current_web3 which is an Flask application context bound object

Version 0.0.0

Unreleased

Chore

	Project: Initialize project

License

Authors

Flask-Web3 is developed and maintained by the ConsenSys France team and community
contributors. The core maintainers are:

	Nicolas Maurice (nmvalera)

General License Definitions

The following section contains the full license texts for Flask-Web3 and the
documentation.

	“AUTHORS” hereby refers to all the authors listed in the
Authors section.

	The “License” applies to all the source code shipped as
part of Flask-Web3 (Flask-Web3 itself as well as the examples and the unit tests)
as well as documentation.

License

Copyright (c) 2017 by ConsenSys France and contributors.

Some rights reserved.

Redistribution and use in source and binary forms of the software as well
as documentation, with or without modification, are permitted provided
that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of Flask-Web3 nor the names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE AND DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flask_web3	

Index

 C
 | F
 | I

C

 	
 	create_provider() (in module flask_web3.utils)

F

 	
 	flask_web3 (module)

 	
 	FlaskWeb3 (class in flask_web3.extension)

I

 	
 	init_app() (flask_web3.extension.FlaskWeb3 method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Flask-Web3

 		
 About Flask-Web3

 		
 A simple example

 		
 An advanced example

 		
 Flask-Web3 configuration

 		
 API

 		
 Extension

 		
 Utils

 		
 Contributing guidelines

 		
 Feature Requests, Bug Reports, and Feedback…

 		
 Reporting issues

 		
 Setting-Up environment

 		
 Requirements

 		
 First time setup

 		
 Project organisation

 		
 Coding

 		
 Development Workflow

 		
 Testing

 		
 Writing documentation

 		
 Precisions

 		
 Makefile commands

 		
 make init

 		
 make clean

 		
 make test-lint

 		
 make lint

 		
 make coverage

 		
 make tox

 		
 make docs

 		
 Changelog

 		
 Version 0.1.1

 		
 Version 0.1.0

 		
 Version 0.0.0

 		
 License

 		
 Authors

 		
 General License Definitions

 		
 License

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

